Axon regeneration impediment: the role of paired immunoglobulin-like receptor B

نویسندگان

  • Jing Liu
  • Yan Wang
  • Wei Fu
چکیده

Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor (NgR), the paired immunoglobulin-like receptor B (PirB) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of NgR and PirB almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. PirB participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. PirB is an inhibitory receptor similar to NgR, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of PirB, and concludes that PirB is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PirB is a functional receptor for myelin inhibitors of axonal regeneration.

A major barrier to regenerating axons after injury in the mammalian central nervous system is an unfavorable milieu. Three proteins found in myelin--Nogo, MAG, and OMgp--inhibit axon regeneration in vitro and bind to the glycosylphosphatidylinositol-anchored Nogo receptor (NgR). However, genetic deletion of NgR has only a modest disinhibitory effect, suggesting that other binding receptors for ...

متن کامل

A multi-domain fragment of Nogo-A protein is a potent inhibitor of cortical axon regeneration via Nogo receptor 1.

Nogo-A limits axon regeneration and functional recovery after central nervous system injury in adult mammals. Three regions of Nogo-A (Nogo-A-24, Nogo-66, and Nogo-C39) interact with the neuronal Nogo-66 receptor 1 (NgR1). Nogo-66 also interacts with a structurally unrelated cell surface receptor, paired immunoglobulin-like receptor (PirB). We show here that the other two NgR1-interacting domai...

متن کامل

Myelin suppresses axon regeneration by PIR-B/SHP-mediated inhibition of Trk activity.

Paired immunoglobulin-like receptor B (PIR-B) partially mediates the regeneration-inhibiting effects of the myelin-derived protein Nogo, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). In this study, we report that inhibition of the PIR-B signaling cascades in neurons enhances axon regeneration in the central nervous system (CNS). Binding of MAG to PIR-B le...

متن کامل

Axonal regeneration of optic nerve after crush after PirBsiRNA transfection

Axon can’t regenerate after central nervous system injury because of myelin-associated protein exerting its effects through the paired immunoglobulin like receptor (PirB). In our study, axon regeneration of retinal ganglion cells (RGCs) after optic nerve (ON) crush was investigated both in vivo and in vitro in rat after PirBsiRNA transfection. The eyes transfected with AAV-PirBsiRNA were as exp...

متن کامل

Inhibitory Killer Cell Immunoglobulin-Like Receptor KIR3DL1 in Combination with HLA-B Bw4iso Protect against Ankylosing Spondylitis

Background: The HLA class I molecules serve as ligands for both T cell receptors and killer cell immunoglobulin-like receptors (KIRs). Objective: We investigated the HLAC and HLA-Bw4 alleles as well as KIRs expression on CD56 positive lymphocytes to evaluate whether these genes and molecules could influence Ankylosing spondylitis (AS) susceptibility, alone or in combination. Methods: We typed 4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015